Bridging scales between solid mechanics and surface chemistry


  • Bonnemay, M., Bronoël, G., Jonville, P. & Levart, E. Nouvelle méthode de tracé des courbes électrocapillaires sur les métaux solides. CR Acad. Sci. Paris 2605262–5265 (1965) ((in french)).

    CAS Google Scholar

  • Beck, TR “Electrocapillary curves” of solid metals measured by extensometer instrument. J. Phys. Chem. 73466–468 (1969).

    CAS Article Google Scholar

  • Fredlein, RA, Damjanovic, A. & Bockris, JOM Differential surface tension measurements at thin solid metal electrodes. Surf. Sci. 25261–264 (1971).

    ADS CAS Article Google Scholar

  • Fredlein, RA & Bockris, JOM An electrocapillary study of the gold-perchloric acid solution interface. Surf. Sci. 46641–652 (1974).

    ADS CAS Article Google Scholar

  • Martinez, RE, Augustyniak, WM & Golovchenko, JA Direct measurement of crystal surface stress. Phys. Rev. Lett. 64(9), 1035–1038 (1990).

    ADS CAS PubMed Article Google Scholar

  • Sander, D. & Ibach, H. Experimental determination of adsorbate-induced surface stress: Oxygen on Si(111) and Si(100). Phys. Rev. B 43(5), 4263–4267 (1991).

    ADS CAS Article Google Scholar

  • Seidel, H. & Csepregi, L. Three-dimensional structuring of silicon for sensor applications. Sens. Actuators 4455–463 (1983).

    CAS Article Google Scholar

  • Meyer, E. Atomic force microscopy. Progr. Surf. Sci. 41(1), 3–49 (1992).

    ADS CAS Article Google Scholar

  • Raiteri, R. & Butt, HJ Measuring electrochemically induced surface stress with an atomic force microscope. J. Phys. Chem. 9915728–15732 (1995).

    CAS Article Google Scholar

  • Haiss, W. & Sass, JK Adsorbate-induced surface stress at the solid electrolyte interface measured with an STM. J. Electroanal. Chem. 386267–270 (1995).

    Article Google Scholar

  • Brunt, TA, Rayment, T., O’Shea, SJ & Welland, ME Measuring the surface stresses in an electrochemically deposited metal monolayer: Pb on Au (111). Langmuir 125942–5946 (1996).

    CAS Article Google Scholar

  • Ibach, H., Bach, CE, Giesen, M. & Grossman, A. Potential-induced stress in the solid-liquid interface: Au(111) and Au(100) in an HCl04 electrolyte. Surf. Sci. 375107–119 (1997).

    ADS CAS Article Google Scholar

  • Hu, K. & Bard, AJ In situ monitoring of kinetics of charged thiol adsorption on gold using an atomic force microscope. Langmuir 144790–4794 (1998).

    CAS Article Google Scholar

  • Berger, R. et al. Surface stress in the self-assembly of alkanethiols on gold. Science 2762021–2024 (1997).

    CAS Article Google Scholar

  • Lang, HP et al. A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors. Apple. Phys. A. 66S61–S64 (1998).

    CAS Article Google Scholar

  • Pericet-Cámara, R., Best, A., Butt, H.-J. & Bonaccurso, E. Effect of capillary pressure and surface tension on the deformation of elastic surfaces by sessile liquid microdrops: An experimental investigation. Langmuir 2410565–10568 (2008).

    PubMed Article CAS Google Scholar

  • Bico, J., Reyssat, E. & Roman, B. Elastocapillarity: When surface tension deforms elastic solids. Annu. Rev. Fluid Mech. 50629–659 (2018).

    ADS MathSciNet MATH Article Google Scholar

  • Francis, MF & Curtin, WA Mechanical work makes important contributions to surface chemistry at steps. Nat. Commun. 66261. https://doi.org/10.1038/ncomms7261 (2015).

    ADS CAS Article PubMed Google Scholar

  • Begley, MR, Utz, M. & Komaragiri, U. Chemo-mechanical interactions between adsorbed molecules and thin elastic films. Jal. Mech. Phys. Solids 532119–2140 (2005).

    ADS MathSciNet CAS MATH Article Google Scholar

  • Amiot, F. A model for chemically-induced mechanical loading on MEMS. J. Mech. Mater. Struct. 2(9), 1787–1803 (2007).

    Article Google Scholar

  • Dareing, DW & Thundat, T. Simulation of adsorption-induced stress of a microcantilever sensor. J. Apple. Phys. 97043526 (2005).

    ADS Article CAS Google Scholar

  • Begley, MR & Utz, M. Multiscale modeling of adsorbed molecules on freestanding microfabricated structures. J. Apple. Mech. Trans. ASME 75(2), 021008 (2008).

    ADS Article CAS Google Scholar

  • Gurtin, ME, Markenscoff, X. & Thurston, RN Effect of surface stress on the natural frequency of thin crystals. Apple. Phys. Lett. 29(9), 529–530 (1976).

    ADS CAS Article Google Scholar

  • Gurtin, ME & Murdoch, AI Surface stress in solids. Int. J. Solids Struct. 14431–440 (1978).

    MATH Article Google Scholar

  • Stoney, G. The tension of metallic films deposited by electrolysis. Proc. R. Soc. Lond. Ser. A 82172 (1909).

    ADS CAS Article Google Scholar

  • Vermaak, JS, Mays, CW & Kuhlmann-Wilsdorf, D. On surface stress and surface tension: I. Theoretical considerations. Surf. Sci. 12(2), 128–133 (1968).

    ADS CAS Article Google Scholar

  • Mays, CW, Vermaak, JS & Kuhlmann-Wilsdorf, D. On surface stress and surface tension. II. Determination of the surface stress of gold. Surf. Sci. 12(2), 134–140 (1968).

    ADS CAS Article Google Scholar

  • Marks, LD Inhomogeneous strains in small particles. Surf. Sci. 150302–318 (1985).

    ADS CAS Article Google Scholar

  • Marks, LD Experimental studies of small particle structures. Rep. Prog. Phys. 57603 (1994).

    ADS CAS Article Google Scholar

  • Krayzman, V. et al. Local structural distorsions and failure of the surface-stress “Core-Shell” model in Brookite titania nanorods. Chem. Mater. 32(1), 286–298 (2020).

    CAS Article Google Scholar

  • Germer, LH & MacRae, AU Surface reconstruction caused by adsorption. PNAS 48(6), 997–1000 (1962).

    ADS CAS PubMed PubMed Central Article Google Scholar

  • Germer, LH & MacRae, AU Adsorption of hydrogen on (110) Nickel surface. J. Chem. Phys. 371382 (1962).

    ADS CAS Article Google Scholar

  • Gsell, M., Jakob, P. & Menzel, D. Effect of substrate strain on adsorption. Science 280717–720 (1998).

    ADS CAS PubMed Article Google Scholar

  • Kibler, LA, El-Aziz, AM, Hoyer, R. & Kolb, DM Tuning reaction rates by lateral strain in a palladium monolayer. Ange. Chem. Int. Ed. 442080–2084 (2005).

    CAS Article Google Scholar

  • Weissmüller, J., Viswanath, RN, Kibler, LA & Kolb, DM Impact of surface mechanics on the reactivity of electrodes. Phys. Chem. Chem. Phys. 132114–2117 (2011).

    PubMed Article Google Scholar

  • Weissmüller, J. Adsorption-strain coupling at solid electrodes. Curr Open Chem. Eng. 2445–53 (2019).

    Article Google Scholar

  • Mindlin, RD Second-gradient theory of strain and surface tension in linear elasticity. Int. J. Solids Struct. 1417–438 (1965).

    Article Google Scholar

  • Cordero, NM, Forest, S. & Busso, EP Second-strain gradient elasticity of nano-objects. J. Mech. Phys. Solids 9792–124 (2016).

    ADS MathSciNet Article Google Scholar

  • Gao, W. et al. Determining the adsorption energies of small molecules with the intrinsic properties of adsorbates and substrates. Nat Commun. 111196. https://doi.org/10.1038/s41467-020-14969-8 (2020).

    ADS CAS Article PubMed PubMed Central Google Scholar

  • Maranganti, R. & Sharma, P. Length scales at which classical elasticity breaks down for various materials. Phys. Rev. Lett. 98195504 (2007).

    ADS CAS PubMed Article Google Scholar

  • Maranganti, R. & Sharma, P. A novel atomistic approach to determine strain-gradient elasticity constants: Tabulation and comparison for various metals, semiconductors, silica, polymers and the (ir) relevance for nanotechnologies. J. Mech. Phys. Solids 551823–1852 (2007).

    ADS CAS MATH Article Google Scholar

  • Jakata, K. & Every, AG Determination of the dispersive elastic constants of the cubic crystals Ge, Si. GaAs and InSb. Phys. Rev. B 77174301 (2008).

    ADS Article CAS Google Scholar

  • Boisen, A., Dohn, S., Keller, S.S., Schmid, S. & Tenje, M. Cantilever-like micromechanical sensors. Rep. Progr. Phys. 74(3), 036101 (2011).

    ADS Article CAS Google Scholar

  • Leave a Comment