Bonnemay, M., Bronoël, G., Jonville, P. & Levart, E. Nouvelle méthode de tracé des courbes électrocapillaires sur les métaux solides. CR Acad. Sci. Paris 2605262–5265 (1965) ((in french)).
Beck, TR “Electrocapillary curves” of solid metals measured by extensometer instrument. J. Phys. Chem. 73466–468 (1969).
Fredlein, RA, Damjanovic, A. & Bockris, JOM Differential surface tension measurements at thin solid metal electrodes. Surf. Sci. 25261–264 (1971).
Fredlein, RA & Bockris, JOM An electrocapillary study of the gold-perchloric acid solution interface. Surf. Sci. 46641–652 (1974).
Martinez, RE, Augustyniak, WM & Golovchenko, JA Direct measurement of crystal surface stress. Phys. Rev. Lett. 64(9), 1035–1038 (1990).
Sander, D. & Ibach, H. Experimental determination of adsorbate-induced surface stress: Oxygen on Si(111) and Si(100). Phys. Rev. B 43(5), 4263–4267 (1991).
Seidel, H. & Csepregi, L. Three-dimensional structuring of silicon for sensor applications. Sens. Actuators 4455–463 (1983).
Meyer, E. Atomic force microscopy. Progr. Surf. Sci. 41(1), 3–49 (1992).
Raiteri, R. & Butt, HJ Measuring electrochemically induced surface stress with an atomic force microscope. J. Phys. Chem. 9915728–15732 (1995).
Haiss, W. & Sass, JK Adsorbate-induced surface stress at the solid electrolyte interface measured with an STM. J. Electroanal. Chem. 386267–270 (1995).
Brunt, TA, Rayment, T., O’Shea, SJ & Welland, ME Measuring the surface stresses in an electrochemically deposited metal monolayer: Pb on Au (111). Langmuir 125942–5946 (1996).
Ibach, H., Bach, CE, Giesen, M. & Grossman, A. Potential-induced stress in the solid-liquid interface: Au(111) and Au(100) in an HCl04 electrolyte. Surf. Sci. 375107–119 (1997).
Hu, K. & Bard, AJ In situ monitoring of kinetics of charged thiol adsorption on gold using an atomic force microscope. Langmuir 144790–4794 (1998).
Berger, R. et al. Surface stress in the self-assembly of alkanethiols on gold. Science 2762021–2024 (1997).
Lang, HP et al. A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors. Apple. Phys. A. 66S61–S64 (1998).
Pericet-Cámara, R., Best, A., Butt, H.-J. & Bonaccurso, E. Effect of capillary pressure and surface tension on the deformation of elastic surfaces by sessile liquid microdrops: An experimental investigation. Langmuir 2410565–10568 (2008).
Bico, J., Reyssat, E. & Roman, B. Elastocapillarity: When surface tension deforms elastic solids. Annu. Rev. Fluid Mech. 50629–659 (2018).
Francis, MF & Curtin, WA Mechanical work makes important contributions to surface chemistry at steps. Nat. Commun. 66261. https://doi.org/10.1038/ncomms7261 (2015).
Begley, MR, Utz, M. & Komaragiri, U. Chemo-mechanical interactions between adsorbed molecules and thin elastic films. Jal. Mech. Phys. Solids 532119–2140 (2005).
Amiot, F. A model for chemically-induced mechanical loading on MEMS. J. Mech. Mater. Struct. 2(9), 1787–1803 (2007).
Dareing, DW & Thundat, T. Simulation of adsorption-induced stress of a microcantilever sensor. J. Apple. Phys. 97043526 (2005).
Begley, MR & Utz, M. Multiscale modeling of adsorbed molecules on freestanding microfabricated structures. J. Apple. Mech. Trans. ASME 75(2), 021008 (2008).
Gurtin, ME, Markenscoff, X. & Thurston, RN Effect of surface stress on the natural frequency of thin crystals. Apple. Phys. Lett. 29(9), 529–530 (1976).
Gurtin, ME & Murdoch, AI Surface stress in solids. Int. J. Solids Struct. 14431–440 (1978).
Stoney, G. The tension of metallic films deposited by electrolysis. Proc. R. Soc. Lond. Ser. A 82172 (1909).
Vermaak, JS, Mays, CW & Kuhlmann-Wilsdorf, D. On surface stress and surface tension: I. Theoretical considerations. Surf. Sci. 12(2), 128–133 (1968).
Mays, CW, Vermaak, JS & Kuhlmann-Wilsdorf, D. On surface stress and surface tension. II. Determination of the surface stress of gold. Surf. Sci. 12(2), 134–140 (1968).
Marks, LD Inhomogeneous strains in small particles. Surf. Sci. 150302–318 (1985).
Marks, LD Experimental studies of small particle structures. Rep. Prog. Phys. 57603 (1994).
Krayzman, V. et al. Local structural distorsions and failure of the surface-stress “Core-Shell” model in Brookite titania nanorods. Chem. Mater. 32(1), 286–298 (2020).
Germer, LH & MacRae, AU Surface reconstruction caused by adsorption. PNAS 48(6), 997–1000 (1962).
Germer, LH & MacRae, AU Adsorption of hydrogen on (110) Nickel surface. J. Chem. Phys. 371382 (1962).
Gsell, M., Jakob, P. & Menzel, D. Effect of substrate strain on adsorption. Science 280717–720 (1998).
Kibler, LA, El-Aziz, AM, Hoyer, R. & Kolb, DM Tuning reaction rates by lateral strain in a palladium monolayer. Ange. Chem. Int. Ed. 442080–2084 (2005).
Weissmüller, J., Viswanath, RN, Kibler, LA & Kolb, DM Impact of surface mechanics on the reactivity of electrodes. Phys. Chem. Chem. Phys. 132114–2117 (2011).
Weissmüller, J. Adsorption-strain coupling at solid electrodes. Curr Open Chem. Eng. 2445–53 (2019).
Mindlin, RD Second-gradient theory of strain and surface tension in linear elasticity. Int. J. Solids Struct. 1417–438 (1965).
Cordero, NM, Forest, S. & Busso, EP Second-strain gradient elasticity of nano-objects. J. Mech. Phys. Solids 9792–124 (2016).
Gao, W. et al. Determining the adsorption energies of small molecules with the intrinsic properties of adsorbates and substrates. Nat Commun. 111196. https://doi.org/10.1038/s41467-020-14969-8 (2020).
Maranganti, R. & Sharma, P. Length scales at which classical elasticity breaks down for various materials. Phys. Rev. Lett. 98195504 (2007).
Maranganti, R. & Sharma, P. A novel atomistic approach to determine strain-gradient elasticity constants: Tabulation and comparison for various metals, semiconductors, silica, polymers and the (ir) relevance for nanotechnologies. J. Mech. Phys. Solids 551823–1852 (2007).
Jakata, K. & Every, AG Determination of the dispersive elastic constants of the cubic crystals Ge, Si. GaAs and InSb. Phys. Rev. B 77174301 (2008).
Boisen, A., Dohn, S., Keller, S.S., Schmid, S. & Tenje, M. Cantilever-like micromechanical sensors. Rep. Progr. Phys. 74(3), 036101 (2011).