Prizes Are Not Always a Win for Science


Scientists have been rewarded for their discoveries since at least 1731, when English scientist Stephen Gray became the first winner of the Royal Society’s Copley Medal. As science grew, so did its reward infrastructure. Around 1980, the number of prizes outstripped the number of scientific fields; it has continued to grow at an exponential rate ever since. More than 300 prizes are now awarded in physics, chemistry, biology, and medicine, with physics handing out by far the most honors compared with the number of active researchers in the field.

For individuals, winning a prize is clearly beneficial, and not just because of the cash and name recognition. In a recent study, Brian Uzzi, professor of management at Northwestern University in Illinois, and colleagues found that researchers who win prizes become more productive afterward, compared with non-prize-winning peers. Uzzi’s team has also found that prize benefits extend beyond the winning individual; Their students are more likely to win a prize than are equally talented students studying with non-winners.

Of course, not all prizes are equal. The Nobel, first awarded in 1901, occupies a singular place in the minds of both scientists and the public. Bill Phillips, a physicist at the National Institute of Standards and Technology in Maryland, who has won dozens of awards, divides his career into pre- and post-Nobel periods. Pre-Nobel, Phillips was already giving plenty of talks, he says, but they were mostly to fellow scientists at conferences, colloquia, and so on. After winning the physics Nobel in 1997 for cooling neutral atoms to ultralow temperatures, the number of invitations he received “exploded.” And many of the new invitations were—and continue to be—for public lectures on wide-ranging topics, such as the relationship between science and religion.

The Nobel affected Phillips in other ways too. He says he received funding and attracted graduate students far more easily after winning, allowing him to “carefully” expand his research group and increase its productivity. “Even though I wasn’t as intimately involved in my research, and the character of my research changed,” he says, “there was a positive effect.”

Less famous prizes can have similar effects on their winners. In 2020, Nissanke won the Breakthrough Prize Foundation’s $100,000 New Horizons in Physics Prize for her research on how gravitational- and electromagnetic-wave signals can be combined to study deep-space objects like neutron stars—an example of so-called multimessenger astronomy. Since then, she says, more potential students and postdocs have shown interest in joining her research group, and she has been invited to speak more frequently. These invitations have included opportunities to discuss general science topics. “That is a great privilege,” she says.

JM Desert

Samaya Nissanke of the University of Amsterdam won the Breakthrough Prize Foundation’s New Horizons in Physics prize in 2020 for her leadership role in the discovery of the first gravitational-wave event observed with an electromagnetic counterpart, one of the first observations in multimessenger astronomy. Radio-wave detections by the Very Large Array in New Mexico (background) were an important part of that work.Samaya Nissanke of the University of Amsterdam won the Breakthrough Prize Foundation’s New Horizons in Physics prize in 2020 for her leadership role in the discovery of the first gravitational-wave event observed with an electromagnetic counterpart, … Show more

Leave a Comment